Hydrogeology

Konza LTER Workshop 1 September 2007 Gwen Macpherson

What We've Learned

• Water flux

- Aquifer-atmosphere link
- Stream-aquifer interactions
- Chemistry

Aquifer-Atmosphere Link

- up to 33% of evapotranspiration is groundwater supported
- Mill Creek: York JP et al., 2002, Putting aquifers into atmospheric simulation models: an example from the Mill Creek Watershed, northeastern Kansas: ADVANCES IN WATER RESOURCES 25 (2): 221-238.
 Gutowski WJ et al., 2002, A coupled land-atmosphere simulation program (CLASP): calibration and validation: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 107 (D16): Art. No. 4283.
 - daily oscillation in groundwater-level occurs during extended dry periods in the growing season
- Konza Prairie: Kissing, K. R., and G. L. Macpherson, 2006, Short-term water-level fluctuations and long-term water-level decline at the Konza Prairie—drought or vegetation?: GSA Abstracts with Programs 38 (1): A

Daily water-level fluctuations: during growing season AND no rainfall

Atmosphere-Aquifer Interactions

- Annual pattern
- Impact of
 - lower annual precipitation
 - timing shift

2006 high-resolution water-level elevation in one well

Stream-Aquifer Interactions

- Response times
- Direction

Stream-Aquifer Responses, Types 1 & 2

Stream-Aquifer Response, Type 3

Stream-Aquifer Interactions —the future

• Computer models (D. Steward?)

What We Have Learned

• Water flux

- Aquifer-atmosphere link
- Stream-aquifer interactions

• Chemistry

- Annual cycles
- Solute sources
- Nutrient export
- $-CO_2$

Annual chemical cycles

Solute sources

Nutrient export

Rapid Snowmelt Event (RSE)

Rapid Snowmelt Event, RSE

Rapid Snowmelt Event, RSE

Rapid Snowmelt Event, RSE

CO_2 1990-2005 $\begin{cases} Groundwater CO_2 \text{ increase: } ~20\% (2100 \text{ ppm}) \\ Atmospheric CO_2 \text{ increase: } ~7\% (23 \text{ ppm}) \end{cases}$

Planning for the future (cont'd)...

- Develop new initiatives for LTER VI
 - Grassland responses to chronic N enrichment
 - Chronosequence of sites for restoration studies
 - Bison and fire as drivers of spatial patterns and consumer responses; linkages across temporal and spatial scales
 - Potential changes in fire/grazing treatments (?) to promote new science while ensuring site integrity
 - Groundwater sequestration of grassland CO₂
- Integration of LTER with other major bioscience initiatives (LTER Regional Science Initiative, NEON, KSU Ecological Genomics program)

Hydrogeochemistry --the future

- Will annual cycles change because of changing lengths of seasons?
- With less meteoric precipitation, will chemical weathering affect bedrock relatively more?
- With a drier climate, will dust imports become more important, "restock" the soils with easily weatherable solids?
- With change in flora (more C3's? or more zerophytes??), will biogeochemical cycling change?
- Is there an atmosphere-groundwater CO₂ link, and will it cause faster chemical weathering?

Approaches

- Watershed-scale measurements:
 - Soil CO₂ to groundwater -- quantify the flux
 - Dust import--quantify the flux
 - Trace element cycling--what is unique about grasslands?
 - Cross-site comparisons toward a global assessment
- Experiments:
 - Isotope-tagged CO₂ transport