Equations for Calculating Reference Crop ET from Hourly Weather Data

Jay M. Ham, Professor, Department of Agronomy, Kansas State University

September 28, 2000

Reference Crop ET by the FAO-56 Method

Reference crop evapotranspiration (ET₀) can be estimated on an hourly basis using the Penman-Monteith equation (Allen, 2000)

\[
ET₀ = \frac{0.408\Delta(R_n - G) + \frac{37}{T + 273.2}u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}
\]

(1)

where

- ET₀: Reference evapotranspiration (mm h⁻¹)
- Rₙ: Net radiation (MJ m⁻² h⁻¹)
- G: Soil heat flux (MJ m⁻² h⁻¹)
- T: Air temperature (C)
- eₛ: saturation vapor pressure at air temperature (kPa)
- eₐ: vapor pressure of air (kPa)
- u₂: Wind speed at 2 m (m s⁻¹)
- Δ: slope of saturation vapor pressure curve at air temperature (kPa C⁻¹)
- γ: psychrometer constant (kPa C⁻¹)

Equation 1 is an estimate of ET from a hypothetical short grass with a height of 0.12 m, a surface resistance of 70 s m⁻¹, and an albedo of 0.23 (Allen et al., 1998; Allen, 2000)

Supporting Calculations

Saturation vapor pressure, eₛ, in kPa can be approximated at temperature, T, in C, using the equation of Murray (1967)

\[
e_s = 0.61078 \exp\left(\frac{17.269T}{237.3 + T}\right)
\]

(2)

Actual vapor pressure of the air, eₐ, in kPa, is the product of the eₛ at air temperature and a simultaneous, collocated measurement of relative humidity (RH): eₐ = eₛ RH, where RH is between 0 and 1.
The slope of the saturation vapor pressure curve, Δ, in kPa K$^{-1}$, can be calculated as the partial derivative of Muray's Eq.

$$\Delta = e_s \left(\frac{17.269}{237.3 + T} \right) \left(1 - \frac{T}{237.3 + T} \right)$$

(3)

noting that e_s is the result from equation 2.

Atmospheric pressure, P, in kPa, can be approximated from altitude, A, in m, and air temperature, T, in C, as

$$P = 101.3 \exp \left(-\frac{3.42 \times 10^{-2} A}{T + 273.15} \right)$$

(4a)

Pressure can be estimated solely from altitude as

$$P = 101.3 \left(\frac{293 - 0.0065 A}{293} \right)^{5.26}$$

(4b)

The latent heat of vaporization, L, in J kg$^{-1}$, can be approximated as

$$L = 2.5005 \times 10^6 - 2.359 \times 10^3 (T_a + 273.15)$$

(5)

Heat capacity of air, c_p, in J kg K$^{-1}$, can be expressed as

$$c_p = 1004.7 \left(\frac{0.522 e_a}{P} + 1 \right)$$

(6)

where R_d is the gas constant (287.04 J kg K$^{-1}$). The psychrometric constant, γ, in kPa K$^{-1}$, can be approximated as

$$\gamma = \frac{1.61 c_p P}{L}$$

(7)

References

Example ET₀ Calculations for the Konza Prairie Research Natural Area, Manhattan, KS

Example Input Data (hourly weather data)
- Global Irradiance, Rs: 700 W m⁻²
- Air Temperature, T (1.5m): 30 C
- Relative Humidity, RH (1.5 m): 0.4
- Wind Speed, u (3 m): 5 m s⁻¹

1. Estimate R_n and G
For vegetated surfaces R_n, in MJ m⁻² hr⁻¹ can be estimated as
R_n = (0.0036)*[0.76*Rs – 38.5]
(equation based on field measurements from KNRPA watershed 1D)
R_n = (0.0036)*(0.76*700-38.5)
R_n = 1.78 mm h⁻¹
G is assumed to be 0.1*Rn during the day and 0.5*Rn during the night
If computing with software, use an if-then statement,
If Rs>0 then G=0.1*Rn else G=0.5*Rn
G = 0.1*1.78 = 0.178 mm h⁻¹

2. Estimate the vapor pressure deficit (e_s-e_a)
Calculate e_s first
From Eq. 2, e_s at 30 C is 4.24 kPa
then
e_s-e_a = e_s*(1-RH) = 4.24*(1-0.4) = 2.55 kPa

3. Estimate wind speed at 2 m
Most weather stations measure wind speed at 3 m. Winds speed at 2 m can be estimated by assuming a logarithmic wind profile (surface similarity theory, z₀=0.015m, h=0.08 m).

u₂ = u₃*0.92
u₂ = 5*0.92 = 4.6 ms⁻¹

4. Calculate Δ and γ
Given an air 30 C air temperature, the result from Eq. 3 is Δ = 0.243 kPa C⁻¹
Equation 7 is often simplified to the form
γ = 0.665E-3*P
Equation 4b yields P = 96.7 kPa (Assuming A= 400 m)
and
γ = 0.665E-3*96.7 = 0.064 kPa C⁻¹

5. Calculate ET
Substituting the above-stated results into Eq. 1, yields

ET₀ = 0.615 mm h⁻¹