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Abstract

Precipitation quantity has been shown to influence grassland aboveground net primary productivity
(ANPP) positively whereas experimental increases in of temporal variability in water availability commonly
exhibit a negative relationship with ANPP. We evaluated long term ANPP datasets from the Konza Prairie
Long Term Ecological Research (LTER) program (1984 –1999) to determine if similar relationships could
be identified based on patterns of natural variability (magnitude and timing) in precipitation. ANPP data
were analyzed from annually burned sites in native mesic grassland and productivity was partitioned into
graminoid (principally C4 grasses) and forb (C3 herbaceous) components. Although growing season pre-
cipitation amount was the best single predictor of total and grass ANPP (r2=0.62), several measures of
precipitation variability were also significantly and positively correlated with productivity, independent of
precipitation amount. These included soil moisture variability, expressed as CV, for June (r2=0.45) and the
mean change in soil moisture between weekly sampling periods in June and August (%wv) (r2=0.27 and
0.32). In contrast, no significant relationships were found between forb productivity and any of the pre-
cipitation variables (p>0.05). A multiple regression model combining precipitation amount and both
measures of soil moisture variability substantially increased the fit with productivity (r2=0.82). These
results were not entirely consistent with those of short-term manipulative experiments in the same grass-
land, however, because soil moisture variability was often positively, not negatively related to ANPP.
Differences in results between long and short term experiments may be due to low variability in the historic
precipitation record compared to that imposed experimentally as experimental levels of variability exceeded
the natural variability of this dataset by a factor of two. Thus, forecasts of ecosystem responses to climate
change (i.e. increased climatic variability), based on data constrained by natural and recent historical
rainfall patterns may be inadequate for assessing climate change scenarios if precipitation variability in the
future is expected to exceed current levels.

Introduction

Climate change models differ with regard to pro-
jected changes in annual precipitation amounts in

the central US, but they are in agreement with
predictions that the dynamics of event distribution
will become more variable (Groisman et al. 1999;
Easterling et al. 2000; Houghton et al. 2001).
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General circulation models predict precipitation
events of a greater magnitude, but with longer
intervening dry periods and reduced frequency.
The longer dry periods between storms will gen-
erally lead to reduced soil moisture levels (Knapp
et al. 2002). Predictions by the Canadian Model
Scenario (VEMAP) suggest that the Great Plains
region of North America will experience an
approximate 30% decrease in annual precipitation
over the next century (USGCRP 2003). Perhaps
more importantly, similar model predictions for
soil moisture forecast a 50% decline during June –
August over the next century (USGCRP 2003).
Substantial changes in moisture availability and
temporal variability will undoubtedly impact eco-
systems in which productivity is limited by water
availability (Sala et al. 1988; Weltzin et al. 2003).
The mesic grasslands (tallgrass prairie) ecosystem
of the Central Great Plains is one such region
sensitive to dynamic changes in precipitation tim-
ing (Fay et al. 2003). Thus, a better understanding
of the relationship between productivity and
precipitation amount and variability is warranted.

The importance of precipitation amount vs.
precipitation pattern on grassland productivity has
been assessed using experimental rainfall manipu-
lation plots (RaMPs) at the Konza Prairie Bio-
logical Station (KPBS) (Fay et al. 2000). Results
of this research indicate that when temporal vari-
ability in soil moisture was increased independent
of rainfall quantity, carbon cycling processes and
plant community composition were altered
(Knapp et al. 2002; Fay et al. 2003). Specifically,
greater precipitation variability (changes in rainfall
pattern, independent of seasonal amount), in-
creased soil moisture variability and reduced mean
soil water content, which resulted in increased
plant water stress and decreased productivity (Fay
et al. 2002; Knapp et al. 2002; Fay et al. 2003).
Thus, based on experimental approaches, both
precipitation amount (Knapp et al. 2001) and
temporal pattern have been shown to be important
in determining productivity within this grassland.

An alternative approach to assessing potential
changes in climate on grassland ecosystems is to
use long term ecological data and climate records
to identify those aspects of climate to which eco-
logical processes are most likely to be sensitive
(Sala et al. 1988; Burke et al. 1991; Lauenroth and
Sala 1992; Sala et al. 1992; Paruelo et al. 1999;
Jobbágy and Sala 2000). For example, Briggs and

Knapp (1995, 2001) used regression analysis to
assess the responsiveness of aboveground net pri-
mary productivity (ANPP) in tallgrass prairie to
interannual variation in precipitation based on
long term data. Subsequent experimental manip-
ulation of precipitation events confirmed and
further defined this relationship (Knapp et al.
2001).

The objective of this research was to compare the
results of manipulative experiments, which have
focused primarily on intra-annual precipitation
alterations, to those derived from analyses of long
term natural precipitation variability recorded at
the Konza Prairie LTER site. The Konza LTER
site has archived biological and climatological data
since its inception in 1981, and this dataset was used
as a proxy for assessing decadal-scale changes in
this grassland. The overarching question that gui-
ded this analysis was: ‘do the patterns of variability
present in long term Konza datasets mimic the re-
sults found in short term experimental manipula-
tions?’ To answer this question, we used 16 years of
precipitation and ANPP data from an annually
burned watershed on site. Annually-burned sites
are both the most productive and water limited of
all burn frequencies in the tallgrass prairie (Knapp
et al. 1998, 2001). We analyzed patterns of natural
precipitation and soil moisture variability (inter-
and intra-annually) to assess their influence on
ANPP of both common growth forms (C4 grasses
and C3 forbs) in this grassland. Specifically, we
sought evidence for the importance of intra-annual
variability on ANPP independent of precipitation
amount using these long term datasets. We pre-
dicted that the productivity response to precipita-
tion and/or soil moisture variability would be
consistent with patterns identified through experi-
mental manipulations in annually burned prairie.

Methods

Analyses were based on long term ecological data
collected at KPBS, in northeastern Kansas, USA
(39�05¢ N, 96�35¢ W). KPBS is a 3487 ha unp-
lowed tallgrass prairie dominated by a few warm-
season C4 grasses, yet supporting a species-rich
pool of herbaceous C3 forbs (Freeman 1998).
KPBS experiences a temperate mid-continental
climate of cold, dry winters and warm wet sum-
mers with the majority of the annual precipitation
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occurring between April and September (835 mm
mean annual precipitation).

Total aboveground productivity is estimated by
quantifying the current years’ biomass in the
annually burned watersheds (Briggs and Knapp
1995). Plant biomass is harvested during late
August/early September, the time of peak biomass.
Total ANPP is measured using four transects with
five 0.1 m2 subplots therein. This protocol is
repeated for each soil type – watershed combina-
tion. The clipped subplots are marked so as to
avoid subsequent re-sampling for at least 4 years.
This method ensures independence in productivity
data between consecutive years. For comparisons
in this study, measurements of ANPP come from a
single annually-burned watershed on KPBS which
has historically been the most representative of all
the annually-burned watersheds on site. For the
data we compared, each transect in this watershed
was located on the same soil type. Biomass was
separated into multiple components that included
graminoid and forb biomass, current year’s dead,
and a minor woody plant component (if present).
Following sorting, biomass was oven-dried at
60 �C for 48 h and weighed to the nearest 0.01 g
(Abrams et al. 1986). Total ANPP can vary widely

across years, but this response is largely driven by
the grass component (Figure 1).

As part of the LTER program, soil moisture is
measured at bi-weekly intervals across many sites
on KPBS. Because these estimates are too coarse
temporally to quantify variability, we estimated
daily values in soil moisture. These estimates were
derived using a soil hydrology model (WaterMod
2.0.9, Greenhat Software, 1998). This mechanistic
model is described in detail in Johnson et al.
(2003), but briefly, the model is driven by the
relationship between biomass productivity and
agents of soil moisture change, particularly soil
water infiltration and drainage, run-off, soil char-
acteristics, precipitation amount, and estimates of
potential evapotranspiration (PET) (calculated
using the Penman-Monteith equation). Soil water
infiltration is calculated using a capacitance mod-
el, which is parameterized using saturated water
content, drainage point, and saturated hydraulic
conductivity of the soil (Johnson et al. 2002, 2003).
Measured input variables included end of season
ANPP, daily precipitation, and daily PET, and they
were used to derive daily model estimates of soil
moisture for each year. The model was sensitive to
annual biomass changes, and was parameterized

Year
1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

T
o

ta
lA

N
P

P
 (

g
 /

 m
2 )

0

35

70

200

300

400

500

600

P
recip

itation (m
m

)

0
300
600
900
1200

Total
Grass
Forb

Figure 1. Long term record of aboveground net primary production (ANPP) plus SE (n=20) for grass (primarily C4 species) and forb

(C3 herbaceous plants) with corresponding growing season precipitation amount in annually burned mesic grassland in NE Kansas

(Konza Prairie LTER site). Typically, grass productivity accounts for approximately 95% of total ANPP with variations in timing and

amount of precipitation shifting this percentage between 90 and 99% (Briggs and Knapp 1995).
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with dates for emergence (5/1), maximum growth
(7/15), date of harvest (9/30) and water use
coefficienct (209 mm precipitation per kg dry
weight, which equates to the average total biomass
multiplied by the growing season precipitation,
Briggs and Knapp 1995). To assess the accuracy of
the model, estimates of soil moisture from the 20
to 30 cm soil depth were compared to bi-weekly
neutron probe measurements available from the
site at a 25 cm depth. We calculated the percent
difference between the measured soil moisture
value and the modeled estimate and then noted the
average monthly difference across the entire
dataset for each month of the growing season. The
largest difference between measured and modeled
values occurred in the month of April (l=16.7%,
SE=1.4%). However, as the growing season ad-
vanced, predictions of soil moisture were ‡90%
similar to measured values for July, August, and
September (l=8.6, 10.5, and 10.8%, and SE=1.2,
1.6, 1.9%, respectively). Model estimates were
consistently lower than measured values in April,
but for the subsequent 5 months, no consistent
bias between measured and modeled predictions
occurred, and the model followed the temporal
dynamics of soil moisture following wetting and
drying events. The linear relationship between
measured and modeled soil moisture is portrayed
graphically in the inset panel of Figure 2.

Statistical analyses were focused on several
abiotic parameters that could potentially influence
productivity. Variables analyzed included timing
of precipitation events, length of dry-periods, the
magnitude of the precipitation-event, mean
monthly pan evaporation, indices of rainfall
evenness during the growing season (Bronikowski
and Webb 1996), and consecutive differences in
precipitation amount between events, months, and
years (Oesterheld et al. 2001). Simple and multiple
linear regression (SLR, MLR) comparisons were
made between ANPP and these abiotic parameters
using the GLM functions of SAS (SAS 2001).
Multiple linear regression procedures were
performed using a stepwise model selection meth-
od to identify significant reduced models contain-
ing non-correlated variables. The appropriate
model to use was identified from the pool of can-
didate models by Akaike’s Information Criterion.

Analyses of colinearity were performed to en-
sure independence among the predictor variables
used. Yearly measurements of ANPP were inde-

pendent from consecutive years due to the afore-
mentioned biomass harvesting protocol. Point
estimates in the analyses refer to an average
growing season value for each year, unless other-
wise specified. Due to the time-series nature of the
data, a test of autocorrelation among residuals was
performed to identify any first-order serial corre-
lation between year-to-year ANPP or precipitation
data. Based on the Durbin –Watson test statistic,
errors between years were uncorrelated for either
variable (DW=1.728 and 1.719 for precipitation
and ANPP, respectively).

Results

The majority of predictor variables we used
exhibited no relationship with grass productivity,
and of those that did, many lacked indepen-
dence from precipitation amount. However, two
parameters describing soil moisture variability
were significantly related to ANPP independent of
precipitation amount. The first variable was an
absolute difference index expressing the mean
change in soil moisture between weekly sample
periods. This index has been previously used as an
indicator of soil moisture variability (Knapp et al.
2002). The second index of variability was the
coefficient of variation (CV) of mean monthly soil
moisture. CV has also been used as a representa-
tive index of variability (Le Houérou et al. 1988;
Fay et al. 2003). Both parameters were calcu-
lated for each of the growing season months
(April –September) for all 16 years.

Precipitation and soil moisture amount were
significantly and positively related to grass ANPP
in this annually burned grassland (Figure 2).
Growing season precipitation amount best ex-
plained the variation of grass ANPP (r2=0.62).
However, none of the abiotic predictor variables
analyzed were significantly related to forb ANPP
during this 16-year-period. Neither index of soil
moisture variability was significantly related to
productivity across the entire growing season,
but when analyses were conducted with monthly
timesteps, relationships were significant for
portions of the growing season (Table 1). For
the absolute difference index, variability and pro-
ductivity were significantly correlated for the
months of June and August, but the nature of the
relationship differed. For this index, variability
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and productivity were positively correlated in
June, but negatively correlated in August
(Table 1). The remaining months had positive
trends, albeit extremely weak correlations. The CV
index had similar seasonal trends to the absolute

difference index with significant positive trends in
June, and subsequent negative trends for the
remainder of the season (Table 1). Although non-
significant, the CV index exhibited a negative
trend across the entire growing season.
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Figure 2. Grass aboveground net primary production vs. growing season (April –Sept.) precipitation (mm) and mean growing season

soil moisture (modeled) at 30 cm depth. Inset figure shows model predictions vs. measured soil moisture (neutron probes at 25 cm)

averaged over the entire season for each year of the study. The solid line is a 1:1 line between measured vs. modeled soil moisture.
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The magnitude of the natural variability noted
in the two soil moisture indices using long term
datasets was considerably lower than that imposed
experimentally in the rainfall manipulation plots
(RaMPs) study (Figure 3). The maximum CV of
soil water content in July for the long term data
(16 years) was only 54% of the variability reported
in the RaMPs experiment (3 years) (CV=21 vs.
39%; Figure 3a). Similarly, the maximum vari-
ability in soil water content (absolute difference
index) reported in the long term datasets was only
33% of the maximum variability imposed in the
RaMPs experiment (variability=3.5 vs. 10.5;
Figure 3b).

A multiple linear regression (MLR) model was
used to determine if multiple factors could explain
more variation than the analysis of precipitation
amount alone (Figure 2). Predictor variables in-
cluded in the full model MLR analysis included
five variables added in this order: annual precipi-
tation amount, average annual soil moisture, the
mean difference in weekly soil water contents (for
May and June only), CV of June soil moisture, and
the average length of consecutive dry-periods be-
tween rain occurring during the growing season.
The analysis identified three variables to be sig-
nificant for predicting ANPP: precipitation
amount and the two soil moisture variability
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Figure 3. Comparison of the magnitude of soil water variability imposed experimentally vs. estimated from the long term record of

precipitation variability. Bars correspond to the magnitude of variability experienced for CV of July soil water content (A) and mean

variability in soil water content over the growing season (B). The different time periods of variability compared between A and B (July

vs. entire season, respectively) were chosen to match those reported from experimental studies (Knapp et al. 2002; Fay et al. 2003).

Table 1. Correlation coefficient matrix depicting the relationships between grass ANPP (end of season) and two indices of soil

moisture variability (an absolute difference index vs. the CV, see text) partitioned by the six growing season months and for the entire

season.

Index by month Soil moisture variability index vs. grass ANPP

Apr. May June July Aug. Sept. Entire season

Absolute difference r2 0.14 0.02 0.27 0.01 0.32 0.01 0.05

Pearson’s 0.37 0.13 0.52 0.09 -0.57 0.12 0.23

CV r2 0.15 0.06 0.45 0.01 0.15 0.02 0.03

Pearson’s )0.38 0.26 0.67 )0.32 )0.38 )0.14 )0.17

Both the coefficient of determination and the Pearson correlation coefficient are given to describe the proportional reduction in error

and nature (positive or negative) of the linear relation, respectively. Values for significant associations (p<0.05) are in bold.

70



parameters (r2=0.82, Figure 4). Each of these
variables exhibited a positive correlation with
ANPP.

Discussion

Analyses of long term datasets or natural climatic
gradients have been used to predict ecosystem re-
sponses to future climates (Burke et al. 1991;
Paustain et al. 1995; Alward et al. 1999; Rastetter
et al. 2003; Dunne et al. 2004). These methods
provide a long term alternative to experimental
approaches to climate change research that rely on
highly manipulative experiments. Long term data
sets are expected to reveal patterns of ecosystem
responses to climate variability similar to those
identified by short-term manipulation. However,
this assumes that predicted changes for future cli-
mates are of a similar magnitude to that recorded
in the historic data. A key question addressed by
this study is: can the past predict the future for this
grassland?

Assessing the impact of precipitation variability
on ecosystem productivity and function is inher-
ently difficult due to spatial and temporal differ-
ences within a site as well as across an entire
region. Grasslands exhibit higher inter-annual

variation in productivity and may require longer
time periods to reveal trends in variability com-
pared to forested biomes (Lauenroth and Sala
1992; Frank and Inouye 1994). Within grassland
biomes, the influence of precipitation variability
on ANPP depends on the ecosystem structure and
whether the constraint is biological or biogeo-
chemical (Paruelo et al. 1999). Inter-annual vari-
ation in ANPP within the shortgrass steppe of
Colorado, USA resulted from both current year
precipitation amount and ANPP of the previous
year (Oesterheld et al. 2001). However, in this
tallgrass ecosystem, within-season variability in
rainfall patterns are more likely to contribute to
the large variation in annual ANPP reported
(Frank and Inouye 1994; Knapp and Smith 2001).
Tallgrass prairie ANPP can respond quickly to
changes in precipitation due to the inherently high
RGR of the dominant vegetation resulting in LAI
adjustments during the growing season (Paruelo
et al. 1999). This leads to high temporal plant and
soil water dynamics (James et al. 2003). Within the
tallgrass prairie, the dynamics of rainfall distribu-
tion are characterized by the majority of events
being small (<10 mm) and not contributing lar-
gely to the annual sum, interspersed with a small
number of large events (>25 mm) that constitute
the majority of the total annual amount of
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precipitation. Because of the relative contribution
and frequency of small vs. large events, the vari-
ance of precipitation patterns can potentially be as
important as the overall annual amount and serve
as a key driver of biomass production (Lauenroth
and Sala 1992; Williams et al. 1998).

In order to compare the long term data archived
at KPBS to short-term manipulative experiments,
we required soil moisture data at a finer temporal
scale (daily) than available from the long term data
(bi-weekly). Modeling soil moisture on a daily
timestep allowed for comparisons of identical
measures of precipitation variability, as manifested
through changes in soil moisture between both
datasets (long term and experimental). Without
this daily timestep, the central theme of the man-
uscript comparing experimental manipulations
and long term data would be impossible. As an
alternate approach to determining the influence of
abiotic variability, models can be used heuristically
to explore how varying amounts of precipitation
translate into different levels of soil moisture by
progressively changing the values of other influ-
ential abiotic variables used in the correlative
analysis. This technique would provide mechanis-
tic support for conclusions derived from studies of
correlative patterns between abiotic parameters
and ANPP without reliance upon daily estimates
of modeled soil moisture.

Analyzing the natural variability in precipita-
tion patterns from the LTER data sets at KPBS,
several similarities and differences were evident
when compared to the reported findings of the
rainfall manipulation plots (RaMPs). Perhaps the
most prominent result of the RaMPs experiment
was the negative relationship between ANPP and
soil moisture variability; a relationship stronger
than that between productivity and soil water
amount (Knapp et al. 2002; Fay et al. 2003).
While a significant relationship between produc-
tivity and soil moisture variability was present in
the long term datasets (Table 1), the relationship
between ANPP and average soil moisture amount
was much stronger (Figure 2; r2=0.58). The dif-
fering results between studies using long vs. short-
term data was likely due to differences in the
magnitude of variability being compared. Both
indices of soil moisture variability calculated from
the historical record were of a magnitude that was
less than half of that imposed in RaMPs studies
(Figure 3; Knapp et al. 2002; Fay et al. 2003).

Indeed, if the results of Knapp et al. (2002) or Fay
et al. (2003) were constrained to the range of val-
ues reported in the long term dataset, the patterns,
significance, and implications would be altered
markedly.

The nature of the relationship between vari-
ability and productivity also differed between the
RaMPs experiment and the long term datasets.
Results from both the site and biome level have
shown that precipitation variability and precipi-
tation amount are inversely correlated (Knapp
and Smith 2001; Knapp et al. 2002; Fay et al.
2003). In this study, indices of soil moisture
variability were not significantly correlated with
productivity when averaged across the entire
growing season (Table 1). However, the rela-
tionship between productivity and variability
were significant when analyzed as a monthly re-
sponse (Table 1). The response differed during
the growing season, with generally positive trends
for April, May, and June, and negative trends
during July, August, and September. The change
in slope from positive to negative may reflect the
seasonal pattern of shifting limitations within the
tallgrass prairie community (Seastedt and Knapp
1993; Blair 1997). The positive relationship early
in the growing season suggests that productivity
was limited by variables other than precipitation
and soil moisture (i.e., light and temperature).
For example, because soil moisture is high in the
spring, extended warm dry periods with high
irradiance that would increase soil water vari-
ability would almost certainly increase growth in
the dominant C4 grasses. This transition from a
positive to negative relationship between ANPP
and soil moisture variability illustrates the time
periods for which precipitation exerts the greatest
control over growth. Little influence of soil
moisture is noted during the cool spring season,
but variability exerts a greater impact following
the summer dry-down of soil moisture. Changing
seasonal relationships between productivity and
precipitation have been reported for other grass-
lands. Jobbágy and Sala (2000) found that
cumulative precipitation was a non-significant
predictor of grass productivity in the Patagonian
Steppe when expressed annually, but a significant
relationship between ANPP and precipitation
amount arose when the analysis was divided into
seasons. Similarly, Jobbágy et al. (2002) have re-
ported that in space and time, temperature, not
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precipitation, is the primary variable initiating
growth.

Using space for time substitutions, Sala et al.
(1988) explained a significant amount of grassland
ANPP (r2=0.90) using a single predictor variable:
precipitation amount. However, using 19 years of
productivity and meteorological data at a single
site (KPBS), the explanatory power of this rela-
tionship was reduced substantially (Briggs and
Knapp 1995). Because the relationship between
productivity and a single variable weakens at the
site level as Sala et al. (1988) predicted, we in-
cluded other variables in this analysis in an attempt
to improve the model. We found a substantial in-
crease in the amount of variability explained
(r2=0.82) using a MLR model that incorporated
variability indices compared with a single predictor
variable (r2=0.62 for precipitation amount alone).
The substantial increase in explanatory power re-
ported here contradicts the results of Briggs and
Knapp (1995), who found that the inclusion of
multiple meteorological variables resulted in
<10% increase in explanatory power. The in-
crease we report may result from the inclusion of
parameters reflecting variability rather than means
of additional variables (soil moisture, evaporation,
etc.). The increased fit of this MLR model does
support the contention of Sala et al. (1988), that at
an individual site, the inclusion of multiple vari-
ables will be required to explain the dynamics of
inter-annual ANPP.

Increased precipitation variability in an altered
global climate will likely contribute to wider inter-
annual ANPP fluctuations in the grassland regions
of North America (Knapp et al. 2002; Fay et al.
2003). Previous results from experimental studies
suggest that increased variability will negatively
influence productivity in the tallgrass prairie
(Knapp et al. 2002; Fay et al. 2003). The rela-
tionship between ANPP and moisture variability
in this long term data set differed across the
growing season with positive relationships early,
and negative relationships later. Despite these
differences, results from both short and long term
studies illustrate the importance of temporal pat-
terns of precipitation, not just seasonal means, on
grassland ANPP. These results also indicate that
long term datasets may not capture the range of
variability forecast under altered climate scenarios,
and thus analyses based solely on these historic

data may not be sufficient to predict future eco-
system responses.
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